Nanoimprint Lithography

نویسندگان

  • Hongbo Lan
  • Yucheng Ding
چکیده

The Nanoimprint lithography (NIL) is a novel method of fabricating micro/nanometer scale patterns with low cost, high throughput and high resolution (Chou et al., 1996). Unlike traditionally optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques (Guo, 2007). The resolution of NIL mainly depends on the minimum template feature size that can be fabricated. Compare with optical lithography and next generation lithography (NGL), the difference in principles makes NIL capable of producing sub-10 nm features over a large area with a high throughput and low cost (Chou et al., 1997). Therefore, the charm of NIL largely comes from its capability for patterning with high resolution, high fidelity, high throughput, and low cost. In addition, nanometer sized patterns can easily be formed on various substrates, e.g., silicon wafers, glass plates, flexible polymer films, and even nonplanar substrates. The process has been added to the International Technology Roadmap for Semiconductors (ITRS) for the 32 and 22 nm nodes. Toshiba, moreover, has validated it for 22 nm and beyond. What is more significant is that NIL is the first sub-30 nm lithography to be validated by an industrial user (Yoneda et al., 1997). Nanoimprint lithography was first invented by Chou and his students in 1995 as a low-cost and high throughput alternative to photolithography and e-beam lithography (EBL) for researchers who need high resolution patterning, motivated by the high expense and limited resolution of optical lithography. Due to historical reasons, the term NIL initially refers to a hot embossing lithography (HEL) process, and was also used as a synonym for thermal NIL (Chou et al., 1995). However, NIL has now an extended meaning which includes not only two fundamental types (Hot Embossing Lithography and UV-based Nanoimprint Lithography, UV-NIL) but also many different variations developed such as roll imprint process, laser-assisted direct imprint, reverse imprint lithography, substrate conformal imprint lithography, ultrasonic NIL, etc. Compared to other lithography processes and next generation lithography with nanoscale resolution, such as e-beam lithography and extreme ultraviolet lithography (EUVL), the most prominent advantage of NIL is its ability to pattern 3D and large-area structures from micron to nanometer scale and Source: Lithography, Book edited by: Michael Wang, ISBN 978-953-307-064-3, pp. 656, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0167-9317(96)00097-4

Nanoimprint lithography, a high-throughput, low-cost, nonconventional lithographic method proposed and demonstrated recently, has been developed and investigated. Nanoimprint lithography has demonstrated 10 nm feature size, 40 nm pitch, vertical and smooth sidewalls, and nearly 90 ° corners. Further experimental study indicates that the ultimate resolution of nanoimprint lithography could be su...

متن کامل

Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds

Articles you may be interested in In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications Appl. Fabrication of silicon template with smooth tapered sidewall for nanoimprint lithography High aspect ratio fine pattern transfer using a novel mold by nanoimprint lithography Sub-200 nm gap electrodes by soft UV nanoimprint lithography using polydimethyl...

متن کامل

Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography

We demonstrated the fabrication of Fresnel zone plates with a 75 nm minimum feature size and circular gratings with a 20 nm minimum linewidth in polymethyl methacrylate using nanoimprint lithography, and in metals by means of a lift-off technique. Observation of sharp Moiré patterns indicated the high fidelity of nanoimprint lithography in pattern duplication. Our results showed that nanoimprin...

متن کامل

A review of roll-to-roll nanoimprint lithography

UNLABELLED Since its introduction in 1995, nanoimprint lithography has been demonstrated in many researches as a simple, low-cost, and high-throughput process for replicating micro- and nanoscale patterns. Due to its advantages, the nanoimprint lithography method has been rapidly developed over the years as a promising alternative to conventional nanolithography processes to fulfill the demands...

متن کامل

Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography

We report a promising approach to align molecules in a polymer film patterned by nanoimprint lithography. We found that molecules and chromophores are spontaneously aligned in the plane of the film during the nanopatterning process. Since the polymer–chromophore ~called guest–host! system plays an important role in the field of nonlinear optics and organic optoelectronics, in this letter we pre...

متن کامل

Printed photonic elements: nanoimprinting and beyond

In order to manufacture large-scale photonic devices of various dimensions at a low cost, a number of patterning techniques have been developed. Nanoimprint lithography is among the most promising given its unique advantages, such as high resolution, fast processing speed, high throughput, compatibility with diverse materials, and low cost. This review covers various aspects of nanoimprint lith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012